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Single-molecule fluorescence techniques and super-
resolution microscopy have significantly empowered 
our ability to peer into individual cells, map the 
organization and architecture of biomolecules, and 
monitor bioreactions in real time within subcellular 
spaces. These superior optical microscopic tools 
have allowed quantitative observations on various 
biological systems and revealed that bioreactions 
are not only temporally regulated, but also spatially 
coordinated. The development, improvement, and 
practical application of single-molecule fluorescence 
techniques and super-resolution microscopy require 
synergistic efforts from various disciplines including: 
physics for conceptualization and realization of 
the microscope setup, chemistry for developing 
biorthogonal fluorophores, tagging approaches, and 
labeling methods, and mathematics and computer 
science for implementing imaging processing and 
data analysis algorithms. In this issue, we present 
articles focusing on several current improvements 
in the imaging methods, including strategies to 
reduce imaging background, to increase imaging 
multiplexicity, to simplify the sample preparation 
procedure, and to apply existing imaging methods to 
non-model organisms.

As super-resolution fluorescence microscopy is 
capable of localizing fluorophore-labeled individual 
proteins, DNA and RNA molecules in fixed and living 
cells [1–3], it has been applied to answer various ques-
tions in biology and related fields regarding spatial 
organization, dynamics, and function of biomolecules 
[4–6]. However, the applications of super-resolution 
microscopy have mainly focused on fundamental sci-
ence and medical fields, whereas its applications in 
industry are rarely explored. In the article by van Bel-
jouw et al of this special issue [7], the authors reported 
their development and quantitative assessment of var-
ious fluorescent proteins for single-particle tracking 

photoactivated localization microscopy (sptPALM) 
measurements in Lactococcus lactis, an important 
bacterial species for the dairy industry. The authors 
showed that the photoactivatable fluorescent pro-
teins—in particular, pAmCherry2—can be fused to 
the proteins of interest and controllably induced and 
photoactivated. In addition, the authors demonstrated 
their work using dCas9 proteins, paving the way for the 
applications of super-resolution microscopy and the 
CRISPR-Cas technology in the dairy industry.

Super-resolution fluorescence microscopy, par-
ticularly the multi-color versions, has been demon-
strated to be useful for investigating colocalizations 
and/or interactions between different molecules in 
cells. A complementary single-molecule technique 
to capture native protein complexes and study these 
interactions is the single-molecule pull-down (SiM-
Pull), which combines conventional coimmunopre-
cipitation and single-molecule fluorescence detection 
[8]. In the article by Croop and Han of this special 
issue [9], the authors reported their development of 
a simplified SiMPull assay for analysis of molecular 
interactions from cell or tissue lysates. The simpli-
fied assay was achieved by a new passivation method 
of glass surfaces using didchlorodimethylsilane and 
Tween-20 and the use of monomeric F(ab) fragments. 
The performance of the new passivation method 
is similar to the commonly used polyethylene gly-
col passivation, but the new method is much more  
time-efficient. The authors demonstrated their 
approach on both recombinant proteins and endog-
enous proteins from mammalian cells.

In addition to the super-resolution microscopy 
based on localizing single molecules, stimulated 
emission depletion (STED) nanoscopy [10] repre-
sents another powerful group of super-resolution 
microscopy, which is constantly under active devel-
opment and improvement. In the review article by 
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Ma and Ha [11], the authors reviewed the principle 
of STED nanoscopy and summarized various sources 
of unwanted background noise in STED imaging. 
Importantly, the authors timely and thoroughly 
reviewed various approaches to improve the quality 
of STED images, including time-gating, anti-Stokes 
background removal, and suppression of background 
due to off-focus incomplete depletion. Besides super-
resolution imaging, STED has also been combined 
with fluorescence correlation spectroscopy (FCS) to 
study diffusion of molecules. The authors also sum-
marized recent work in the literature for correcting 
uncorrelated background in STED-FCS.

Compared to ‘omics’ approaches, the high sen-
sitivity of fluorescence imaging is often at the cost 
of low throughput. Due to the limit in the resolvable 
colors of fluorophores, the number of targets that can 
be imaged simultaneously is typically fewer than five. 
To achieve multiplexing imaging, approaches using 
repetitive labeling-and-imaging cycles have been 
developed, which allow imaging of hundreds to thou-
sands of targets, such as RNA transcripts and genomic 
loci, within a single sample [12–16]. Another appeal-
ing way to overcome the ‘color barrier’ is to use vibra-
tional microscopy, as the vibrational transition can 
exhibit 100 fold narrower spectra bandwidth com-
pared to the electronic transition in fluorophores. In 
this issue, Miao et al provided a comprehensive review 
on the probe design for super-multiplexed vibrational 
imaging [17]. They first explained the general prin-
ciples for the probe design. Those principles include: 
(1) probes should contain bond moieties that are not 
found in biological samples; (2) probes should include 
different substituting chemical groups on the two ends 
of the bonds to fine-tune the Raman shifts to archive 
finer spectral resolution; and (3) probes should, at 
best, have strong Raman cross-sections. The authors 
then summarized current probe libraries for super-
multiplexing vibrational imaging, enabling simul-
taneous imaging of tens of colors at the same time. 
Finally, the authors described how, in a similar way of 
fluorescence barcoding, optical barcoding can also be 
achieved with vibrational probes to greatly enhance 
the imaging throughput.

In addition to developments in instrumenta-
tion and practical applications (including the ones 
in this special issue), active development of software 
and algorithms associated with super-resolution 
microscopy are constantly reported. For example, 
machine-learning [18] and deep-learning [19, 20] 
have been incorporated into super-resolution micros-
copy to transform diffraction-limited images into 
super-resolved ones [21], to accelerate the acquisi-
tion of super-resolved images [22], and to perform 
automated structure analysis [23]. In addition, devel-
opment of new tagging approaches and labeling 
methods largely expand the biological application 
of single-molecule and super-resolution imaging. 
For example, two recently developed RNA-aptamer-

based tagging systems were reported for genetic labe-
ling of RNAs in live cells, which is traditionally limited 
compared to the genetic tagging of proteins. The first 
approach, named ‘Riboglow’, is based on the cobala-
min riboswitch, whose ligand cobalamin (Cb1) is an 
effective fluorescence quencher. The fluorophores 
that are physically linked to Cb1 are quenched in solu-
tion, but dequenched upon Cb1-fluorophore binding 
to the Riboglow aptamer, which is genetically fused to 
the RNA of interest [24]. The second RNA aptamer, 
named ‘Pepper’, can stabilize a bifunctional peptide 
(tDeg) fused to a fluorescent protein (FP). FP-tDeg is 
recruited to the Pepper aptamer genetically inserted 
into the RNA of interest, and generates an RNA-
specific signal, whereas unbound FP-tDeg is rapidly 
degraded via the signal on the tDeg sequence to largely 
reduce the background FP [25]. These two new plat-
forms are highly modular, in the sense that they are 
relatively flexible in the choice of the fluorophores or 
FPs, including those with photoswitchable properties, 
making them potentially compatible with single-mol-
ecule localization microscopy.

In summary, super-resolution fluorescence 
microscopy is a flourishing field. The articles in this 
special issue present and/or review cutting-edge 
development and applications of super-resolution 
techniques. The integration of super-resolution 
microscopy with knowledge and methods from many 
disciplines is expected to catalyze scientific discoveries 
and innovations, offer tremendous potential for solv-
ing complex problems, and provide useful tools in bio-
medical and industrial applications.
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