Supporting Information

Deoxyribozyme-based method for absolute quantification of N⁶-methyladenosine fractions at specific sites of RNA

Magda Bujnowska¹, Jiacheng Zhang², Qing Dai³, Emily M. Heideman¹ and Jingyi Fei^{1,2}

¹Department of Biochemistry and Molecular Biology, ²Institute for Biophysical Dynamics, ³Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA Corresponding author: jingyifei@uchicago.edu

FIGURE S1. Percentage of underestimation of m⁶A fraction due to cleavage of DR on m⁶A sequence. The trace amount of cleavage of DR at m⁶A containing sequence will cause false negative signal in the cleavage reaction and underestimation of the m⁶A percentage. Considering DR cleavage efficiencies of the unmethylated A and m⁶A sequence are F_{DR} and F'_{DR} respectively, and the true m⁶A fraction is F'_m,

$$(1 - F'_m)F_{DR} + F_m'F'_{DR} = 1 - 2^{-\Delta\Delta Ct}$$

where $\Delta \Delta Ct$ is determined in Eq (2). Comparing F'_m to F_m from Eq (7) determined without the correction of F'_{DR}, the percentage of underestimation is

$$\frac{F'_m - F_m}{F'_m} = \frac{F'_{DR}}{F_{DR}}$$

The heat map shows the percentage of underestimation as a function of F_{DR} and F'_{DR} , which increases when F_{DR} decreases, assuming F'_{DR} remains lower than 5%. When F_{DR} is 50% and F'_{DR} is 5%, the error in m6A fraction is 10%.

FIGURE S2. Cleavage efficiencies (F_{DR}) of unmodified *in vitro* transcribed RNA by 40-mer and 60-mer DR and dDR. (A) PAGE showing the DR cleavage of *PLAC2* m⁶A1 and m⁶A2 sites, *ACTB* 1165, and GB RNA by 40-mer and 60-mer DR. (B) Bar plot of the cleavage efficiencies of *PLAC2* m⁶A1 and m⁶A2, *ACTB* 1165, and the GB RNA by 40-mer and 60-mer DR as quantified from (A). Error bars indicate mean \pm s.d. for 3 independent DR cleavage reactions. Red arrows point to full-length uncleaved RNA fragments. All gel splice sites are separate by white space.

FIGURE S3. Cleavage efficiencies (F_{DR}) of unmodified *in vitro* transcribed RNA by 60-mer DR and dDR. (A) PAGE showing the DR cleavage of the seven endogenous targets: *MALAT1* 2515, 2577, and 2611, *ACTB* 1216, *LY6K* 1171, *MCM5* 2367, *SEC11A* 1120, *INCENP* 912, 967 and 1060, *LMO7* 2822, and *MRPL20* 549. (B) Bar plot of the cleavage efficiencies of endogenous targets as quantified from (A). Error bars indicate mean \pm s.d. for 3 DR cleavage reactions. Red arrows point to full-length uncleaved RNA fragments. All gel splice sites are separate by white space.

FIGURE S4. Negative control without DR and with non-functional version of DR (dDR). When the negative control does not contain DR, there is a consistent difference between $Ct_{+DR-ref}$ and $Ct_{-DR-ref}$ (ΔCt_{ref}), with $Ct_{-DR-ref}$ being larger. Use of dDR in the negative control eliminates ΔCt_{ref} . Data comes from quantification of GB RNA with 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 m⁶A fraction input. Error bars indicate mean \pm s.d.

FIGURE S5. Validation of the method for absolute quantification of m^6A fraction of the GB RNA without dDR. (*A*) Normalized real-time fluorescence amplification curves for the DR cleaved synthetic RNAs with primers amplifying the m^6A site. (*B*) Estimated modification fraction as a function of input m^6A fraction for the GB RNA. Error bars indicate mean \pm s.d. for 3 biological replicates.

FIGURE S6. The dependence of cleavage efficiency on the concentration of DR. (A) The cleavage efficiencies of *PLAC2* m⁶A 2 DR in presence and absence of total RNA with varying concentrations of DR. The concentration of the pure RNA was fixed at 50 nM, whereas the concentration of spike-in RNA in to the total RNA was fixed at 1 ng *PLAC2* RNA in 500 ng total RNA to better mimic the abundance of endogenous RNA. (B) F_N correction values for varying concentrations of *PLAC2* m⁶A DR as determined from cleavage efficiencies in (A). All error bars report mean \pm s.d. for 3 biological replicates. The cleavage efficiency of pure RNA is lower when using 50nM of DR, because the reaction was performed in the presence of 50 nM pure RNA, suggesting that the DR needs to be in over molar excess of the target RNA to ensure efficiency hybridization. The decrease in the cleavage efficiency for pure RNA results in a slightly larger than 1 F_N value at 50 nM DR concentration.

FIGURE S7. PAGE showing the DR cleavage efficiency in absence and presence of nearby m^6A , m^1A , and ψ modifications. Labels a-n correspond to 35-nt synthetic RNAs shown in Figure 6A and listed in Supplemental Table S1. Red arrows point to full-length uncleaved RNA. All gel splice sites are separate by white space.

Table S1: Synt	hetic DNA and	d RNA see	quences.

Description	Sequence
GB DNA template	GGTTGCGTTGGGTGTTCCTGTTTCTTTTGGCCTTTGTCTCTGTTTCT
	TTCCTTTCTCCTCCTTGTCGTGTCTGTTCGTTCGTCGCTTTCCTCC
	TTCCTTGTTCTCGCTCGGACTCTTCTGGGCTCTTTCTGCGTTCGCCC
	TTCTTGTTCTCCCTTCTCTGTGGGTCCTGTTCTTGTGCTGGTTGTGC
	TCCCTCCTCTTGGTGCTCCTCCTTTCTGTGGCTGCGCTGGTGTTTCT
	TTCTCTCGGCTGCTCTGTTTGTTGTGGGTCTTTGTTGTGTGTGTTGT
	CTTGTGTGCTGCGTTTTGGTGGTGTCGGTTCTGTGCTGTCTTTCGGC
	CTGTCGTTTTCCTTCTCGTGTTCCGTCCTGTTTTGCGTGTCTCTCCCT
	GTGTTCCCGCTTTCCGTGTTGGCTGTGCTTGGTGTCTTTCGCTTGTTG
	GTTGGTCTCCTGTCCTGTGCTCGTCGGTCTTGTGG
41-nt synthetic ACTB 1216	CGCAAAUGCUUCUAGGCGGACUAUGACUUAGUUGCGUUACU
41-nt synthetic MALAT1 2515	AGUUUGAAAAAUGUGAAGGACUUUCGUAACGGAAGUAAUUU
32-nt synthetic MALAT1 2577	AACUUAAUGUUUUUGCAUUGGACUUUGAGUUA
(a) 35-nt synthetic A 2-nt A control 1	GCCUUGUUCUCGCUCGGACUAUUCUGGGCUCUUUC
(b) 35-nt synthetic A 2-nt m ⁶ A	GCCUUGUUCUCGCUCGGACUm ⁶ AUUCUGGGCUCUUUC
(c) 35-nt synthetic A 2-nt $m^{1}A$	GCCUUGUUCUCGCUCGGACUm ¹ AUUCUGGGCUCUUUC
(d) 35-nt synthetic A 2-nt U control	GCCUUGUUCUCGCUCGGACUUUUCUGGGCUCUUUC
(e) 35-nt synthetic A 2-nt ψ	GCCUUGUUCUCGCUCGGACUψUUCUGGGCUCUUUC
(f) 35-nt synthetic A 4-nt A control 1	GCCUUGUUCUCGCUCGGACUCUACUGGGCUCUUUC
(g) 35-nt synthetic A4-nt m ⁶ A	GCCUUGUUCUCGCUCGGACUCUm ⁶ ACUGGGCUCUUUC
(h) 35-nt synthetic A 4-nt $m^{1}A$	GCCUUGUUCUCGCUCGGACUCUm ¹ ACUGGGCUCUUUC
(i) 35-nt synthetic A 4-nt U control	GCCUUGUUCUCGCUCGGACUCUUCUGGGCUCUUUC
(j) 35-nt synthetic A 4-nt ψ	GCCUUGUUCUCGCUCGGACUCUψCUGGGCUCUUUC
(k) 35-nt synthetic A 2-nt A control 2	GCCUUGUUCUCGCUAGGACUCUUCUGGGCUCUUUC
(l) 35-nt synthetic m ⁶ A 2-nt A	GCCUUGUUCUCGCUm ⁶ AGGACUCUUCUGGGCUCUUUC
(m) 35-nt synthetic A 4-nt A control 2	GCCUUGUUCUCGAUCGGACUCUUCUGGGCUCUUUC
(n) 35-nt synthetic m ⁶ A 4-nt A	GCCUUGUUCUCGm ⁶ AUCGGACUCUUCUGGGCUCUUUC

Description	Sequence
Forward primer GB RNA DNA template	TAATACGACTCACTATAGGGTTGCGTTGGGTGTTCCTG
Reverse primer for GB RNA DNA template	CCACAAGACCGACGAGCACA
Forward primer for ACTB DNA template	TAATACGACTCACTATAGGCCAACACAGTGCTGTCTGGC
Reverse primer for ACTB DNA template	CTGCTGTCACCTTCACCGTTCC
Forward primer for PLAC2 DNA template	TAATACGACTCACTATAGCAAGCAAAGTGAACACGTCG
Reverse primer for <i>PLAC2</i> DNA template	GTACTGACGTCGGCATCGAT
Forward primer for MALAT1 DNA template	TAATACGACTCACTATAGGCTACTAAAAGGACTGGTGT
Reverse primer for MALAT1 DNA template	TTCACCACCAAATCGTTAGC
Forward primer for LY6K DNA template	TAATACGACTCACTATAGGCAGGCCATACCACGCAGAAG
Reverse primer for LY6K DNA template	CCAAGACCCTGGGAAGTCAAA
Forward primer for MCM5 DNA template	TAATACGACTCACTATAGGGAGATGCTGAGCCGCATC
Reverse primer for MCM5 DNA template	CAGCAGGACACTACAGCTCC
Forward primer for SEC11A DNA template	TAATACGACTCACTATAGGGTCTGTGATTGGTGGAATGG
Reverse primer for SEC11A DNA template	AAGACTTACGACCACCTCAG
Forward primer for INCENP DNA template	TAATACGACTCACTATAGATAACCACACCCAGTGCCAG
Reverse primer for INCENP DNA template	TGCGGACAACACTTTCCTGT
Forward primer for LMO7 DNA template	TAATACGACTCACTATAGGAAATGCTGCAGGACAGGGA
Reverse primer for LMO7 DNA template	TGAGAGCCAAAGGGTCTTGG
Forward primer for MRPL20 DNA template	TAATACGACTCACTATAGGCCGCTACTTTCGGATCCAGG
Reverse primer for MRPL20 DNA template	GGCCATCCCTCATGTCTGTT

Table S2: Primers used for generating templates for *in vitro* transcription.

 Table S3: Deoxyribozyme sequences.

Description	Sequence
GB RNA DR 40-mer	CCCAGAAGAGGGGTCTCCAGCTGGACGTTCGAGCGAGAAC
GB RNA dDR 40-mer	CCCAGAAGAGGGGTCTCCTCGTGGATTTCCGAGCGAGAAC
GB RNA DR 60-mer	GCAGAAAGAGCCCAGAAGAGGGGGTCTCCAGCTGGACGTT
	CGAGCGAGAACAAGGAAGGAG
GB RNA dDR 60-mer	GCAGAAAGAGCCCAGAAGAGGGGGTCTCCTCGTGGATTTCC
	GAGCGAGAACAAGGAAGGAG
<i>PLAC2</i> m°A 1 DR 40-mer	CCTCTGAGTGGGGTCTCCAGCTGGACGTTACTCCTGCCCC
$PLAC2 \text{ m}^{6}\text{A 2 DR 40-mer}$	TGGGAAAATGGGGTCTCCAGCTGGACGTTCTGGGCAAGAG
$PLAC2 \text{ m}^{6}\text{A 1 dDR 40-mer}$	CCTCTGAGTGGGGTCTCCTCGTGGATTTCACTCCTGCCCC
PLAC2 m ⁶ A 2 dDR 40-mer	TGGGAAAATGGGGTCTCCTCGTGGATTTCCTGGGCAAGAG
$PLAC2 \text{ m}^6\text{A} 1 \text{ DR} 60\text{-mer}$	AGCGGAAGTGCCTCTGAGTGGGGGTCTCCAGCTGGACGTTA
	CTCCTGCCCCTTCTGTGCTT
<i>PLAC2</i> m°A 2 DR 60-mer	AAGGTGTGGCTGGGAAAATGGGGTCTCCAGCTGGACGTTC
PLAC2 m°A I dDR 60-mer	
$PI AC2 m^6 A 2 dDP 60 mor$	
FLAC2 III A 2 dDK 00-IIIei	
ACTB 1165 DR 40-mer	CTCGTCATACGGGTCTCCAGCTGGACGTTCTGCTGA
ACTP 1165 dDP 40 mor	
ACTB 1165 DR 60-mer	AGGGGCCGGACICGICATACGGGICICCAGCIGGACGIIC
ACTR 1165 dDP 60 mar	
ACTD 1105 dDR 00-mer	GCTTGCTGATCCACATCTG
ACTB 1216 DR 60-mer	GTAACGCAACTAAGTCATAGGGGTCTCCAGCTGGACGTTC
	GCCTAGAAGCATTTGCGGTG
ACTB 1216 dDR 60-mer	GTAACGCAACTAAGTCATAGGGGTCTCCTCGTGGATTTCC
	GCCTAGAAGCATTTGCGGTG
MALATI 2515 DR 60-mer	AATTACTTCCGTTACGAAAGGGGTCTCCAGCTGGACGTTCT
	TCACATTTTTCAAACTAAG
MALAT1 2515 dDR 60-mer	AATTACTTCCGTTACGAAAGGGGGTCTCCTCGTGGATTTCCT
MALATI 2577 DD (0	
MALAII 25// DR 60-mer	AAAATAATCITAACTCAAAGGGGTCTCCAGCTGGACGTTC
MALATI 2577 dDR 60-mer	A A A A T A A T CTTTA A CTCA A A GGGGTCTCCTCGTGG A TTTCC
	AATGCAAAAACATTAAGTTG
MALAT1 2611 DR 60-mer	CAGCTGTCAATTAATGCTAGGGGTCTCCAGCTGGACGTTCT
	CAGGATTTAAAAAATAATC
MALATI 2611 dDR 60-mer	CAGCTGTCAATTAATGCTAGGGGTCTCCTCGTGGATTTCCT
	CAGGATTTAAAAAATAATC
LY6K DR 60-mer	GAAGGCTCAGTCTGTGGCAGGGGGTCTCCAGCTGGACGTTC
	CGTGGCTCAAGACAGGCTGA
LY6K dDR 60-mer	GAAGGCTCAGTCTGTGGCAGGGGGTCTCCTCGTGGATTTCC
	CGIGGCICAAGACAGGCIGA

MCM5 DR 60-mer	CAGAGGTCCCAGCAACATTGGGGGTCTCCAGCTGGACGTTA
	ATGGCAGGCAGCGGCAGGAG
MCM5 dDR 60-mer	CAGAGGTCCCAGCAACATTGGGGTCTCCTCGTGGATTTCA
	ATGGCAGGCAGCGGCAGGAG
SEC11A DR 60-mer	GCTGCATTTTCATTTACAAGGGGTCTCCAGCTGGACGTTTC
	TGTAGGCACTTTAGAAGTG
SEC11A dDR 60-mer	GCTGCATTTTCATTTACAAGGGGTCTCCTCGTGGATTTCTC
	TGTAGGCACTTTAGAAGTG
INCENP 912 DR 60-mer	CTTAGACGCAGACCGCCCCGGGGGTCTCCAGCTGGACGTTC
	CGACCCCTTGACCCTTGGGGG
INCENP 912 dDR 60-mer	CTTAGACGCAGACCGCCCCGGGGTCTCCTCGTGGATTTCCC
	GACCCCTTGACCCTTGGGG
INCENP 967 DR 60-mer	AATCTGGAAAGGCTGGCGAGGGGTCTCCAGCTGGACGTTC
	CGTGGGCCAGGGGAGACCTG
INCENP 967 dDR 60-mer	AATCTGGAAAGGCTGGCGAGGGGTCTCCTCGTGGATTTCC
	CGTGGGCCAGGGGAGACCTG
INCENP 1060 DR 60-mer	TGTGCCGCACCGATTGAGAGGGGGTCTCCAGCTGGACGTTC
	GTGCGAGAGCCCGTGGGCGT
INCENP 1060 dDR 60-mer	TGTGCCGCACCGATTGAGAGGGGGTCTCCTCGTGGATTTCC
	GTGCGAGAGCCCGTGGGCGT
LMO7 DR 60-mer	GAATTTCAGTTGTTACACGGGGGGTCTCCAGCTGGACGTTCT
	CTCTTTTTGCAAAAGTGGT
LMO7 dDR 60-mer	GAATTTCAGTTGTTACACGGGGGGTCTCCTCGTGGATTTCCT
	CTCTTTTTGCAAAAGTGGT
MRPL20 DR 60-mer	CCTAATCAATACAGCAACAGGGGTCTCCAGCTGGACGTTC
	TCAGTGGTACTGCACCACTC
MRPL20 dDR 60-mer	CCTAATCAATACAGCAACAGGGGTCTCCTCGTGGATTTCCT
	CAGTGGTACTGCACCACTC

Table S4: Primers for reverse transcription and qPCR.	
Description	Sequence
Forward primer GB RNA m ⁶ A region	GGTTGCGTTGGGTGTTCCTG
Reverse primer for GB RNA m ⁶ A region	GGGAGAACAAGAAGGGCGAA
Forward primer for GB RNA control region	CGTCCTGTTTTGCGTGTCTC
Reverse primer for GB RNA control region	CCACAAGACCGACGAGCACA
Forward primer for ACTB m ⁶ A region	CCTTCCAGCAGATGTGGATC
Reverse primer for ACTB m ⁶ A region	GCCATGCCAATCTCATCTTG
Forward primer for ACTB control region	CAGGATGCAGAAGGAGATCAC
Reverse primer for ACTB control region	CGATCCACACGGAGTACTTG
Forward primer for <i>PLAC2</i> m ⁶ A region	AAGAGAAGCACAGAAGGGGC
Reverse primer for <i>PLAC2</i> m ⁶ A region	ACGGCTTGGGCAAAGGTGTG
Forward primer for PLAC2 control region	CAAGCAAAGTGAACACGTCG
Reverse primer for PLAC2 control region	TCACTTTAACTTGCACTTTACTGC
Forward primer for MALAT1 m ⁶ A region	GGCAGAAGGCTTTTGGAAGAGT
Reverse primer for MALAT1 m ⁶ A region	CTGGGTCAGCTGTCAATTAATGC
Forward primer for MALAT1 control region	CAGCAGCAGACAGGATTCCA
Reverse primer for MALAT1 control region	TCCTATCTTCACCACGAACTGC
Forward primer for LY6K m ⁶ A region	GGCCTCAGCCTGTCTTGA
Reverse primer for LY6K m ⁶ A region	AATGCAACAGGTGACAACGG
Forward primer for LY6K control region	TGACTGTGCACCTTTGAGCA
Reverse primer for LY6K control region	ACCGAGAGAAGGCAATCACG
Forward primer for MCM5 m ⁶ A region	TCACTGGACTCATGGACTCG
Reverse primer for MCM5 m ⁶ A region	AAGTTCGAGGGCTGCAGT
Forward primer for MCM5 control region	GAGCACAGCATCATCAAGGA
Reverse primer for MCM5 control region	TGCATGCGATGCTGGATCT
Forward primer for SEC11A m ⁶ A region	CAAAGCCCCCAGTGTTTGTA
Reverse primer for SEC11A m ⁶ A region	CGTGCAGAGCTGCATTTTCAT
Forward primer for SEC11A control region	CACTCGAGGGGGACTTTCAGT
Reverse primer for SEC11A control region	GGCTTTGGCTCAACCTTTTAAT
Forward primer for INCENP 912 and 967 m ⁶ A region	TGAGCTCCCTGATGGCTACA
Reverse primer for INCENP 912 and 967 m ⁶ A region	CTCCCGCCATGGAGAATCTG
Forward primer for INCENP 1060 m ⁶ A region	CTCCCATCCTGCCGGATAAC
Reverse primer for INCENP 1060 m ⁶ A region	TGGGCTAAGACTTGGGGACT
Forward primer for INCENP control region	CATCAGTGAGCGCCAGAATG
Reverse primer for INCENP control region	TGATGTCGGGATGCCCTG
Forward primer for LMO7 m ⁶ A region	GAGAGAGTAGAAGAGAAGGG
Reverse primer for <i>LMO7</i> m ⁶ A region	CAAAGAGGCTGGGCTTTGTTC
Forward primer for LMO7 control region	TCACGGAGCACACAAATGGA
Reverse primer for LMO7 control region	TGAGAGCCAAAGGGTCTTGG
Forward primer for MRPL20 m ⁶ A region	GGGAAGGAACCTGAAGGCAT
Reverse primer for MRPL20 m ⁶ A region	TGCAAATTACTCTGTCTCTTTTCC
Forward primer for MRPL20 control region	CCAAAGCCCGATACCTGAAGA
Reverse primer for <i>MRPL20</i> control region	GCTCCACCTGGCACTTAACTA