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RNA BIOCHEMISTRY

Determination of in vivo target search
kinetics of regulatory noncoding RNA
Jingyi Fei,1 Digvijay Singh,2 Qiucen Zhang,1 Seongjin Park,1 Divya Balasubramanian,3

Ido Golding,1,4 Carin K. Vanderpool,3* Taekjip Ha1,2,5,6*

Base-pairing interactions between nucleic acids mediate target recognition in many biological
processes.We developed a super-resolution imaging and modeling platform that enabled the
in vivo determination of base pairing–mediated target recognition kinetics.We examined a
stress-induced bacterial small RNA, SgrS, which induces the degradation of target messenger
RNAs (mRNAs). SgrS binds to a primary target mRNA in a reversible and dynamic fashion, and
formation of SgrS-mRNA complexes is rate-limiting, dictating the overall regulation efficiency
in vivo. Examination of a secondary target indicated that differences in the target search
kinetics contribute to setting the regulation priority among different target mRNAs.This
super-resolution imaging and analysis approach provides a conceptual framework that can
be generalized to other small RNA systems and other target search processes.

B
ase-pairing interactions between nucleic
acids constitute a large category of target
recognition processes such as noncoding
RNA-basedgene regulation [e.g.,microRNAs
(1) and long noncoding RNAs (2) in eukary-

otes and small RNAs (sRNAs) in bacteria (3)],
bacterial adaptive immunity [e.g., the clustered
regularly interspaced short palindromic repeat
(CRISPR) system (4)], and homologous recombi-
nation (5). Although target search kinetics by tran-
scription factors has been studied in vivo (6), the
rate constants for target identification via base-
pairing interactions in vivo are not known for any
system. Here, we developed a super-resolution
imaging and analysis platform to assess the kinet-
ics of base-pairing interaction-mediated target
recognition for a bacterial sRNA, SgrS. SgrS is
produced upon sugar-phosphate stress, and its
function is dependent on an RNA chaperone pro-
tein Hfq. SgrS regulates several target mRNAs
posttranscriptionally through base-pairing inter-
actions that affect mRNA translation and stabil-
ity (7). We combined single-molecule fluorescence
in situ hybridization (smFISH) (8) with single-
molecule localization-based super-resolution
microscopy (9) to count RNAs and obtain infor-

mation on subcellular localization. High spatial
resolution is required for accurate quantification
of the high-copy-number RNAs and sRNA-mRNA
complexes. Here, simultaneous measurements of
sRNA, mRNA, and sRNA-mRNA complexes to-
gether with mathematical modeling allow deter-
mination of key parameters describing sRNA
target search and downstream codegradation of
sRNA-mRNA complexes.
We first studied the kinetic properties of SgrS

regulation of ptsG mRNA, encoding a primary
glucose transporter. SgrS binds within the 5′
untranslated region (UTR) of ptsGmRNA, blocks
its translation, and induces its degradation
(10). We induced stress and SgrS production in
Escherichia coli strains derived from wild-type
MG1655 (table S1) using a nonmetabolizable
sugar analog, a-methyl glucoside (aMG) (10, 11).
Fractions of cell culture were taken at different
time points after induction and fixed (12). Oligo-
nucleotide probes (table S2) labeled with photo-
switchable dyes, Alexa 647 and Alexa 568, were
used to detect SgrS (9 probes) and ptsGmRNA
(28 probes), respectively, using smFISH (8). We
then imaged the cells using two-color three-
dimensional (3D) super-resolution microscopy
(9, 12) (Fig. 1A; compare to diffraction limited
images in Fig. 1B).
In the wild-type strain (table S1), we observed

production of SgrS and corresponding reduction
of ptsGmRNA over a few minutes (Fig. 1A), con-
sistent with SgrS-mediated degradation of ptsG
mRNA (10). In a strain producing an SgrS that
does not base pair with ptsG mRNA due to mu-
tations in the seed region (13, 14) and in an Hfq
deletion (Dhfq) strain (table S1), ptsG mRNA re-

duction was not observed (figs. S1 and S2). To
quantify the copy number of RNAs in each cell,
we employed adensity-based clustering algorithm
to map single-molecule localization signal to in-
dividual clusters corresponding to individualRNAs
(12, 15, 16) (Fig. 1C and movies S1 and S2). The
absolute copy number quantification was vali-
dated by quantitative polymerase chain reaction
(qPCR) (12) (Fig. 1D).
We next built a kinetic model containing the

following kinetic steps: transcription of SgrS (with
rate constant aS) and ptsG (ap), endogenous deg-
radation of ptsG mRNA (with rate constant bp),
degradation of SgrS in the absence of codegrada-
tion with ptsG mRNA (bS,p), binding of SgrS to
ptsGmRNA (with rate constant kon), dissociation
of SgrS from ptsG mRNA (koff), and ribonuclease
E (RNase E)–mediated codegradation of SgrS-ptsG
mRNA complex (kcat) (Fig. 1E). We independently
measured bp and the total SgrS degradation rate,
including endogenous and mRNA-coupled degra-
dation [table S4, fig. S3, and supplementary mate-
rials section 1.9 (SM 1.9)]. Because ptsG mRNA
levels remained constant in the absence of SgrS-
mediated degradation, as observed in the base-
pairing mutant strain (fig. S1), we determined ap
as the product of bp and ptsG mRNA concentra-
tion before SgrS induction (table S4 and SM 1.10)
To determine kon and koff, it is necessary to

count the SgrS-ptsG mRNA complexes. Colocal-
ization of ptsG mRNA and SgrS at the 40-nm
resolution was rarely observed in the wild-type
strain (up to ~5%, similar to ~3% colocalization by
chance, estimated using the base-pairing mutant
as a negative control) (Fig. 2). This is possibly be-
cause SgrS regulates several other target mRNAs
(7) and/or the SgrS-ptsG mRNA complex may
be unstable due to rapid codegradation or dis-
assembly. In an RNase Emutant strain, in which
codegradation is blocked (17, 18) (table S1), ptsG
mRNA levels stayed the same as SgrS levels in-
creased (fig. S4) (17, 18), and a fraction of ptsG
mRNA colocalized with SgrS, increasing over
time to reach ~15% (Fig. 2 and fig. S5). A positive
control using ptsGmRNA simultaneously labeled
with two colors (Fig. 2 and SM 1.8) showed a high
degree of colocalization (~70%), similar to the
reported detection efficiency of colocalization by
super-resolution imaging (19).
We then applied these measured parameters

(ap and bp), used total SgrS degradation rate as a
constraint for bS,p, and determined the remain-
ing parameters (aS, bS,p kon, koff, and kcat) by
fitting equations (Fig. 1E) to the six time-course
changes of SgrS,ptsGmRNA, andSgrS-ptsGmRNA
complex in both the wild-type and the RNase E
mutant strains (Fig. 3A, table S4, and SM 1.10).
We further validated the model by changing
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experimental conditions to vary only the transcrip-
tion rates of SgrS (with lower aMG concentra-
tion) and/or ptsG mRNA (in the absence of
glucose in the growthmedia), and themodel could
account for the data with the same set of kon,
koff, and kcat values (table S4, figs. S6 to S8, and
SM 2.2).
We can now quantitatively examine the effect

of Hfq, which functions by stabilizing the sRNA
or promoting its annealing with the target mRNA
(20). In the Dhfq strain, the degradation rate of
SgrS increased by a factor of 20, whereas the SgrS-
ptsG mRNA association rate decreased slightly
(table S4, figs. S1 and S8, and SM 2.2). Therefore,
for the SgrS-ptsGmRNApair, the primary effect of
Hfq in regulation kinetics is in SgrS stabilization.

This in vivo determination of base pairing–
mediated target search kinetics revealed two im-
portant characteristics of SgrS-mediated ptsG
mRNA degradation. First, the target search pro-
cess is characterized by slow association [kon =
(2.0 T 0.2) × 105M−1 s−1] and fast dissociation (koff =
0.20 T 0.04 s−1), resulting in a dissociation con-
stant (KD = koff/kon) of 1.0 T 0.2 mM (Fig. 3B and
SM 1.11). To get a comparable apparent association
rate, ka,app (kon×[S]), and koff, about one thousand
SgrS molecules per cell need to be produced. The
large KD explains the need for excessive produc-
tion of sRNAmolecules to enable rapid regulation
when cells experience high levels of stress. De-
spite the crowded cellular environment and large
excess of non–target RNA molecules, the kon is

within thewide range ofHfq-mediated sRNA and
targetmRNA association rates reported by in vitro
measurements. In contrast, koff is 1 to 2 orders
ofmagnitude larger than in vitro estimates (21–23).
The large KD for target search in vivo is likely
due to the limited availability of key players in
the cell. For example, Hfq was suggested to be
limited in the cell due to the dynamic competi-
tion for Hfq among different sRNAs (24, 25).
Second, kcat and koff are comparable such that
both codegradation and dissociation can occur
with similar probabilities upon target binding.
Disallowing dissociation by setting koff to zero
cannot explain our experimental data (fig. S9
and SM 2.1). The observed fast kcat (0.4 T 0.1 s−1)
may be due to the formation of a ribonucleo-
protein complex comprised of SgrS, Hfq, and
RNase E, as suggested by biochemical studies
(18); if so, once SgrS-Hfq-RNase E binds the
ptsG mRNA, RNase E would be readily availa-
ble for codegradation.
The kinetic model suggests that the overall

rate of ptsG mRNA degradation is limited by its
association with SgrS: At early time points after
SgrS induction, when the copy number of SgrS is
on the order of tens per cell, ka,app is about two
orders of magnitude smaller than the codegra-
dation rate kcat. The nonhomogenous spatial dis-
tribution of the sRNA and its target mRNA may
also contribute to the slow target search. We ob-
served membrane localization of ptsG mRNA,
whereas SgrS is primarily localized in the cyto-
plasm (fig. S10). Further modeling incorporating
the spatial information and stochastic gene ex-
pression may improve the kinetic analysis.
Regulation prioritization among multiple tar-

gets by one sRNAwas suggestedby computational
modeling (26, 27) and experimental observation
(28). However, how the kinetic prioritization is
achieved remains to be elucidated. We propose
that the combination of kon, koff, and kcat is char-
acteristic of a specific sRNA-mRNA pair and de-
termines the regulatory outcome. kcat may reflect
the regulatory mode (codegradation versus trans-
lation repression) and target search kinetics (kon
and koff) could contribute to the regulatory spec-
ificity and priority among many targets. To in-
vestigate this possibility, we examined manXYZ
mRNA, which encodes a general sugar trans-
porter for mannose and glucose and is also neg-
atively regulated by SgrS. Compared with ptsG,
manXYZ mRNA showed slower degradation ki-
netics (28) (figs. S11 to S13). The prioritization of
ptsG overmanXYZ by SgrS is consistent with the
observation that SgrS regulation of ptsG (but not
manXYZ) is absolutely essential for continued
cell growth under most stress conditions (29).
Using the RNase E mutant strain, we found that
formation of SgrS-manXYZ mRNA complexes is
slower than SgrS-ptsGmRNA complex formation
(fig. S13C). The KD for SgrS binding to manXYZ
mRNA, 2.3 T 0.2 mM, was also higher than 1.0 T
0.2 mM for SgrS binding to ptsG mRNA (Fig. 3B
and SM 1.11). This result indicates that the slower
regulation kinetics observed formanXYZmay, at
least partially, originate from the differences in
target search kinetics.
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Fig. 1. Super-resolution imaging and analysis. (A) 3D Super-resolution images of SgrS and ptsG mRNA
labeled by smFISH projected in 2D planes. (B) Diffraction-limited fluorescent images of SgrS and ptsGmRNA.
Cell boundaries imaged by differential interference contrast in (A) and (B) are depicted by white solid lines. (C)
Examples of clustering analysis with comparison of raw data (left) and clustered data (right). (D) Comparison
of average RNA copy number per cell measured by super-resolution imaging and qPCR. (E) Kinetic scheme of
SgrS-induced ptsGmRNA degradation. Kinetic steps are described in the main text. [p], [S], and [Sp] are the
concentrations of ptsG mRNA, SgrS, and their complex, respectively, in the mass-action equations.
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Overall, our results indicate that the formation
of sRNA-mRNA complexes is reversible and high-
ly dynamic in the cell, providing additional layers
for regulating individual targets. Our kineticmod-
el highlights the importance of target search
kinetics on regulation prioritization. This super-
resolution imaging and analysis platform provides
a conceptual framework that can be generalized to
other sRNA systems andpotentially to other target
search processes.
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Fig. 3. Estimation of kinetic parameters. (A) Modeling of time-course changes of SgrS, ptsG mRNA, and SgrS-ptsG complexes. Average copy numbers per
cell are plotted as a function of time. Rate constants and weighted R2 for modeling are reported in tables S4 and S5. (B) Extraction of KD for SgrS-mRNA
complex formation. The ratio of mRNA in complex with SgrS to free mRNA is plotted against average SgrS copy number and the slope of the linear fitting
reports 1/KD. Error bars in (A) and (B) report standard errors from 200 to 600 cells from two independent measurements.

Fig. 2. Colocalization analysis of SgrS-ptsG com-
plex. (A) Example of colocalization under various
conditions. (B) Quantification of colocalized fraction
of ptsG mRNA in cases (ii), (iii) (at 10 min after SgrS
induction), and (iv) (at 10 min after SgrS induction).
Error bars are standard deviations from three to eight
images. (C) Time-course changes in the fraction of
colocalized ptsG mRNA with SgrS. Error bars are
standard errors from 200 to 600 cells from two in-
dependent measurements.
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STEM CELL AGING

A mitochondrial UPR-mediated
metabolic checkpoint regulates
hematopoietic stem cell aging
Mary Mohrin,1* Jiyung Shin,1* Yufei Liu,2* Katharine Brown,1* Hanzhi Luo,1

Yannan Xi,1 Cole M. Haynes,3,4 Danica Chen1†

Deterioration of adult stem cells accounts for much of aging-associated compromised
tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive.
Here, we identified a regulatory branch of the mitochondrial unfolded protein response
(UPRmt), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular
energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence,
increased mitochondrial protein folding stress (PFSmt), and compromised regenerative
capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged
HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These
findings define the deregulation of a UPRmt-mediated metabolic checkpoint as a reversible
contributing factor for HSC aging.

A
ging is characterized by physiological de-
cline and increased susceptibility to pathol-
ogies and mortality. The rate of aging is
controlled by evolutionarily conserved ge-
netic pathways (1, 2). The general cause of

aging is the chronic accumulation of cellular
damage (2, 3). This conceptual framework raises
fundamental questions about aging. What are
the origins of aging-causing damage?What is the
cell or tissue specificity for sensing or responding
to such damage? Are the effects of cellular dam-
age on physiological aging reversible?
Adult stem cells mostly reside in a metaboli-

cally inactive quiescent state to preserve their
integrity but convert to a metabolically active
proliferative state to replenish the tissue (4–6).
The signals that trigger stem cells to exit the cell
cycle and enter quiescence, and the signal trans-
duction leading to the transition, remain elusive.
SIRT7 is a histone deacetylase that is recruited

to its target promoters by interactions with tran-
scription factors for transcriptional repression (7).
We took a proteomic approach to identify SIRT7-
interacting transcription factors. We transfected

human embryonic kidney–293T (HEK-293T) cells
with Flag-tagged SIRT7, affinity-purified the Flag-
tagged SIRT7 interactome, and identified SIRT7-
interacting proteins bymass spectrometry. Among
the potential SIRT7-interacting proteins was nu-
clear respiratory factor 1 (NRF1), a master regu-
lator of mitochondria (8). Transfected Flag-SIRT7
and endogenous SIRT7 interacted with NRF1 in
HEK-293T cells (Fig. 1, A and B).
SIRT7 bound the proximal promoters of mito-

chondrial ribosomal proteins (mRPs) and mito-
chondrial translation factors (mTFs) but not other
NRF1 targets (Fig. 1C and fig. S1A) (7). NRF1 bound
the same regions as SIRT7 at the proximal pro-
moters ofmRPs andmTFs but not RPS20 (Fig. 1D
and fig. S1B), where SIRT7 binding is mediated
through Myc (9). SIRT7 binding sites were found
adjacent toNRF1 consensus bindingmotifs at the
promoters of mRPs and mTFs (fig. S1C). NRF1
knockdown (KD) using small interfering RNA
(siRNA) reducedSIRT7occupancy at thepromoters
of mRPs and mTFs but not RPS20 (Fig. 1C and
fig. S2). SIRT7 KD using short hairpin RNAs led
to increased expression ofmRPs andmTFs, which
was abrogated by NRF1 siRNA (Fig. 2, A and B,
and fig. S3). Thus, NRF1 targets SIRT7 specifically
to the promoters of mRPs and mTFs for tran-
scriptional repression.
Transcriptional repression of mitochondrial

and cytosolic (7, 9) translation machinery by
SIRT7 suggests that SIRT7 might suppress mito-
chondrial activity and proliferation. SIRT7 KD
cells had increased mitochondrial mass, citrate
synthase activity, adenosine triphosphate levels,

respiration, and proliferation, whereas cells over-
expressing wild type (WT) but not a catalytically
inactive SIRT7 mutant (H187Y) showed reduced
mitochondrial mass, respiration, and prolifera-
tion (Fig. 2, C to E, and fig. S4, A to G) (10, 11).
NRF1 siRNA abrogated the increased mitochon-
drial activity and proliferation of SIRT7 KD
cells (fig. S4, H to J). Thus, SIRT7 represses NRF1
activity to suppress mitochondrial activity and
proliferation.
Sirtuins are increasingly recognized as stress

resistance genes (12–14). Nutrient deprivation
induced SIRT7 expression (fig. S5A). Upon nu-
trient deprivation stress, cells reduce mitochon-
drial activity, growth, and proliferation to prevent
cell death (15, 16). When cultured in nutrient-
deprived medium, cells overexpressing SIRT7
showed increased survival, whereas SIRT7 KD
cells showed reduced survival, which was im-
proved by NRF1 siRNA (fig. S5). Thus, SIRT7 sup-
presses NRF1 activity to promote nutritional
stress resistance.
Perturbation of mitochondrial proteostasis, a

form of mitochondrial stress, activates the mito-
chondrial unfolded protein response (UPRmt), a
retrograde signaling pathway leading to tran-
scriptional up-regulation of mitochondrial chap-
erones and stress relief (17, 18). Mitochondrial
dysfunction results in attenuated translation,
which helps restore mitochondrial homeostasis
(19). SIRT7-mediated transcriptional repression
of the translationmachinery suggests that SIRT7
may alleviate mitochondrial protein folding stress
(PFSmt). PFSmt induced SIRT7 expression (Fig.
2F). Induction of PFSmt by overexpression of an
aggregation-pronemutantmitochondrial protein,
ornithine transcarbamylase (DOTC), results inUPRmt

activation and efficient clearance of misfolded
DOTC (18). In SIRT7 KD cells, misfolded DOTC
accumulated to a higher level (Fig. 2G). SIRT7
KDcells displayed increased apoptosis uponPFSmt

(Fig. 2H) but are not prone to general apoptosis
(9). Thus, SIRT7 alleviates PFSmt and promotes
PFSmt resistance. Consistently, mitochondrial dys-
function ismanifested in themetabolic tissues of
SIRT7-deficient mice (20).
PFSmt induced the expression of canonical

UPRmt genes in SIRT7-deficient cells (fig. S6, A
and B), indicating that induction of SIRT7 and
canonical UPRmt genes is in separate branches of
the UPRmt. Untreated SIRT7 KD cells displayed
increased expression of canonical UPRmt genes
(fig. S6, A and B), but SIRT7 did not bind to their
promoters (fig. S1A) (7), suggesting that SIRT7
deficiency results in constitutive PFSmt and com-
pensatory induction of canonical UPRmt genes.
NRF1 siRNA abrogated increased PFSmt, but not
endoplasmic reticulum stress, in SIRT7 KD cells
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